(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
concat(leaf, Y) → Y
concat(cons(U, V), Y) → cons(U, concat(V, Y))
lessleaves(X, leaf) → false
lessleaves(leaf, cons(W, Z)) → true
lessleaves(cons(U, V), cons(W, Z)) → lessleaves(concat(U, V), concat(W, Z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
concat, lessleaves
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONCAT(x1, x2)) = 0
POL(LESSLEAVES(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(concat(x1, x2)) = [1] + x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(leaf) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
K tuples:
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
Defined Rule Symbols:
concat, lessleaves
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONCAT(x1, x2)) = x1 + x2
POL(LESSLEAVES(x1, x2)) = x2 + x22 + [2]x12
POL(c1(x1)) = x1
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(concat(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(leaf) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:none
K tuples:
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
Defined Rule Symbols:
concat, lessleaves
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))